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EVOLUTION OF A DISCONTINUITY OF A VORTEX SHEET* 

S.K. BETYABV and I.A. SOLNTSEV 

The plane problem of the motion of a vortex sheet, which at the initial 
instant of time represents two sides of the angle 2m - n/k (I/* < lo < 1) , is 

considered. Motions of this kind are difficult to analyze because of the 
instability of the vortex sheet, regarded as a surface of tangential 
discontinuity, or, more accurately, because of the ill-posed nature of 
the Cauchy problem for the evolution equations of these surfaces /l, 2/. 
In problem of the flow around bodies, the evolution of the boundary of a 
jet, the flow of gas through permeable boundaries, the flow from a groove 
in a screen etc., double-spiral vortex formations are produced with an 
infinite number of spirals. This paper is devoted to a numerical 
calculation of these motions. In this case, the singularity is situated 
on the line of discontinuity itself, and not at its end. A simple problem 
of this kind was formulated in /3/, and involved determining the evolution 
of a wedge-shaped line of discontinuity. However, the method proposed 
for solving this problem in /3/, which reduces to a difference approximation 
of the initial differential equations, is unsatisfactory. Below we use 
the method of boundary integro-differential equations /4/, by means of 
which the dimensions of the problem can be reduced by one, and plane 
selfsimilar problems can be reduced to determining a function which 
depends on one variable. 

Consider continuous selfsimilar flow round a corner 2n--n/k, where 'In< k<i. The complex 
flow velocity inside the corner is zero, and outside it is given by 

4nkatn(k-*)zk-1 exp[-in (k - l/2)] (Z = I + Q) (1) 

d, = z, A- iy, = at"2 

where n is the selfsimilarity index. 
At the instant of time t= 0 we replace the solid rays which bound the corner, by a 

line tangential to the discontinuity of velocity. Since the condition of equality of the 
effective pressure on the surface of the wedge when t<O is not satisfied, the glide line 
will be deformed. Its form, together with the "initial" wedge, is shown in Fig.1. 

The configuration of the surface separation, proposed in /3/, contains two inaccuracies. 
Firstly, the non-analytical nature of the solution, which occurs when t<o at the point 
z=O, must be preserved during the evolution. Consequently, the vortex point with zero circ- 
ulation, situated at t= 0 the vertex of the wedge, 
line of separation, as shown in Fig.1. 

will be the centre of a double-spiral 
This fact, ignored in /3/, was confirmed by numerical 

calculations. Secondly, the line of separation must not be symmetrical about the y= 0 axis, 
and is wavy, since an external stimulus is necessary to set up the wave motions. This fact 
was also confirmed by numerical calculations. 

According to dimensional analysis, the flow is 
selfsimilar if kn= 271-L In this case there is 
one independent dimensional constant a, which does 

0.2 
not contain the dimensions of mass. We will require 
that at large distances from the vertex of the wedge 
the complex velocity asymptotically approaches the 
stationary value (1). In this case, at an infinitely 
distant point, the line of separation is wedge-shaped, 
as at 1=0, and the pressure is constant. Then the 
condition for decay at infinity will have the form 

L - - (fC/4)"k exp IT in/(2lr)l as G-f 00 (r = a~at**~G) (2) 

where P is the dimensional circulation, measured 
from the centre of the spiral. 

II The flow considered can be obtained in the 
neighbourhood of any suddenly formed discontinuity 

Fig.1 on the gliding line. This will be the form of the 
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flow in the near wake behind a short wing, having wedge-shaped side edges, 
sonic and supersonic flow of a gas for fairly small angles of attack, when 
wing can be regarded as unbroken. Since the flow in considered in a small 
the line of discontinuty, the assumption of selfsimilarity is justified. 

Numerical calculations were carried out for the case when the line of 
~. 

both in the sub- 
the flow round the 
neighbourhood of 

discontinuity 1s a 
vortex sheet. The equation of the evolution of the vortex sheet z=:(G) has the form 

(3) 

The integration was carried out over the whole vortex sheet, and the particular integral 
represents the principal value of a Cauchy-type integral. The problem depends on one dimen- 
sionless parameter k, which represents the flare angle of the sheet at infinity. 

If we know the solution I= r(G) of the integro-differential equation (3) which satisfies 
condition (2), the .field of flow outside the vortex sheet is determined by the dimensionless 
complex velocity 

+C= 
1 

?&ii s L--Y(C) -03 
The integral here is not a particular integral since L # z (G). 
The infinite number of turns of the spiral discontinuity, characteristic for selfsimilar 

flows, is not amenable to numerical calculation, since the kernel of a double-spiral vortex 
sheet was approximated by a "discrete vortex-two section" scheme by analogy with the "discrete 
vortex-section" scheme used when investiqatinq the evolution of single-spiral discontinuities 

/4/. The kernel of the double-spiral vortex sheet with 
corresponding to a change in the parameter r from -r,to 
circulation r0 = r1 + rz. 

The two sections, connecting the end points of the 
the plane of the flow into two regions (the upper right 
sections is continuous, and the potential of the flow cp 
potentials to be unique in each of the regions of their 
be satisfied: 

an infinite number of turns zl=r,(r,l), 
rl. was replaced by a point vortex with 

spiral with the discrete vortex, divide 
part in Fig.1). The velocity of these 
suffers a discontinuity. For the 

jump Acp, the following equations must 

~‘p~ = - do, AQ= - (1 -a) r, 
where a is an arbitrary parameter in this scheme, whichcannaturally be chosen so that the 
discontinuities of the potential are proportional to I'1 and rl, i.e. a = r,/rl. ~~~ = -rl, A~? = -r2. 

We will require that the total force acting on the point vortex and both sections should 
be zero. We obtain 

zll = z1 rl, t), z12 = z1 c-r,, t) 
where zIP is the complex coordinate of the point vortex, and D0 is the complex velocity at the 
point 210. 

The condition has the following form is selfsimilar variables: 

(4) 

When the dimensionless circulation of the point vortex G,is reduced, the number of turns 
in the spiral increases. Hence, the value of (&determines the error of this numerical scheme 
in the neighbourhood of the kernel. 

To approximate the integrals in (3) and condition (4) for large values of JG I we assumed 
that the sheets have the form (2) when IGI>G,, where G,>O is fairly large. Then the 
integrals over these parts of the sheet can be expressed in the form of a hypergeometricseries. 
The value ofG, was found from the condition that the deviation of the shape of the sheet from 
the asymptotic form, represented by expression (21, was less than a specified value e, for all 

IGI>G, . 
Hence, the value of G,determines the error of the approximation of the form of the sheet 

when ICl>l. 
In the intermediate regions, where G,<G<G, and -Gz<G<-GG, the vortex sheets can be 

represented by a series of discrete vortices. The form of the partsofthe sheet defined by 
the coordinates of the discrete vortices, were found by an iterational method. We used form 

(2) as the initial approximation, while the coordinate z,, was found from condition (4). 
The iterations were carried out using (3) and condition (4) and was stopped when the 

discrepancy 
F = max , sim_p-l 

14&N , I 
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became less than the specified amount z0 (=10-"), where N is the total number of vortices, the 
subscript denotes the number of the discrete vortex in the sheet, and the superscript repres- 

ents the number of the iteration. 
In the next stage an additional vortex was added to each end of the vortex sheet, and 

the circulation of the neutral vortex was reduced bv an amount equal to the total circulation 
of the additional vortices. The iterational process was then begun again. 

The build-up of the vortex sheet, and consequently, the further refinement of its form, 
was continued until the distance between the vortices decreased to e0 . The dependence of the 
change in the discrepancy on the number of iterations has a saw-tooth form with a decreasing 
amplitude. For a constant number of vortices, E decreases rapidly and becomes less than cO. 
After building up the vortex sheet, E increases abruptly, while the jumps decrease monotonic- 
ally as N increases. 

Numerical calculations were carried out for different values of k, and showed that double- 
spiral structures are feasible over the whole range 'JzfIr<i. Unlike /5/, a numerical solution 
could not be obtained for k= 1, as was also found in /6/. The vortex sheets obtained for k= 
0.56 and 0.71 are shown in Figs.1 and 2 respectively. 

Fig.2 Fig.3 

It is interesting to note that even when there are two-three turns in the spiral the 
numerical solution agrees satisfactorily with the asymptotic solution /7/. In polar self- 
similar coordinates r,(j with centre at the focus of the spiral (Fig.1) as f3--_03 we have 
I3 = 0" - .Or-l/n - 0 (,.-l/n). In Fig.3 we show that the results of num'erical calculations differ only 
slightly from this relationship (curves 1, 2and3 correspond to values of k of 0.5, 0.62, and 
0.83; the continuous curves are for G>O, and the dashed curves are for C<U). 

Obviously, the selfsimilar jet at the initial instant of time, which was formed in the 
experiments carried out by Yakimov at the edge of a prismatic cylinder incident on water /8/, 
is terminated by a double-spiral loop. This featuqe is an inherent property of particles of 
liquid which have acquired an "infinite" velocity at the instant of contact t= 0 with an 
edge of the incident body, and is possible in principle /9/. Unlike the algebraic form of a 
spiral vortex sheet (when n>l/& the free boundary is a logarithmic spiral, and converges 
rapidly to a constant scale. Hence, in experiments even for large Reynolds numbers, the turns 
of 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

the spiral of a free boundary are difficult to detect. 

The authors thank V.F. Molchanov and A.M. Gaifullin for useful discussions. 
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THE FIRST FUNDAMENTAL PROBLEM OF THE THEORY OF 
ELASTICITY FOR A SYMMETRIC LUNE* 

P.V. KEREKESBA, E.I. LEMPER and O.V. MEDEROS 

The first fundamental problem of the theory of elasticity is considered 
for a symmetric lune, when a symmetrically distributed normal load is 
specified on its boundary, and there are no tangential stresses. The 
problem is formulated and solved without preliminary reduction to the 
basic biharmonic problem. The proposed version and solution are based 
on the combined method of Fourier integrals and analysis of the Carleman 
problem /l, 2/. The problem of the stress state in a circular lune acted 
upon along the segments of its side surface by a uniform, normal 
compressive force was considered earlier in /3/, where the first funda- 
mental problem of the theory of elasticity for a lune was reduced to the 
corresponding biharmonic problem. 

1. The problem is formulated as follows /3/: to find the solution of the boundary value 
problem 

-&j \fj =O, B=irv; h= cl,a_:coJB 

where g (a)/2 is a given function characterizing the distributed load, and UJ (oL,~) is anunknown 
function. The symmetry of the stress state makes it possible to utilize the boundary condi- 
tions on the coordinate line p= y only, and we need consider only half of the region occupied 
by the lune - m<a<m,o<fiBd. 

Applying the integral Fourier transformation to (1.1) and boundary conditions (1.2), we 
obtain 

d’W 
F+2(i--) dt I -ff&+(,a+l)aw=o (1.3) 

(I + I)% W (2 + i, y) + (t - i)' W (z - i, y) + ? COS YZ’W (I. V) + 
i (2 + i) W (1: + i. y) -i (2 - i) W (z - 1, y) = G (I) 

‘dW 
Y$ &V = 

(w=v($;, c=v&?q), v(f)=$&@-=d=) 
-0D 

(1.4) 

Let us write the general solution of (1.3) symmetrical with respect to fl 

W(=, p) = A (z) ch ZB cos B + B (z) shzt3 sin B (1.5) 

Substituting this solution into the second boundary condition of (1.4), we obtain a relation 
connecting B (2)with A(Z), and from (1.5) we obtain 

w (=. p) = A (t) [ch Z@ cos 0 + C(I) sh ZB sin 81 (1.6) 

c (I) = (tg y - z thsy) (tgy - th 'Y)-' 
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